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Abstract

This paper explores the possibility of recovering a lost co
channel from an RGB image, based on the information pre
in the remaining two color channels, as well as on a priori
knowledge about the statistics of sensor responses in a 
environment. Different regression and neural network rec
ery methods are compared and the results show that 
simple linear techniques suffice to obtain a good approxi
tion of the original color channel.

Remote sensing and other visualization applications
benefit from these methods. Desaturated colors and skin 
are faithfully restored, which is important for the compr
sion of still images and video signals.

Introduction

Missing camera sensors lead to loss of information in acqu
images. If the sensor failure is localized to a set of pixels
image can be restored with a high degree of accuracy, b
on local information from the neighboring pixels.1,2 How-
ever, it can happen that a whole color channel may fai
which case the image cannot be recovered accurately. F
a visualization perspective, the issue in this extreme c
is to minimize the perceptual distortions caused by the m
ing sensor. Losing all information present in a color chan
of an RGB image strongly degrades the image quality 
gives the image a strong color cast (e.g. if G, the green chan
nel is lost, the image will look purple because of the rem
ing R and B components). In the RGB color space, t
image gamut is located in a plane defined by the rem
ing two color channels.

The loss of a whole color channel could be caused
sensor failure, an image transmission problem or becaus
camera is dichromatic in the first place. As shown in,3 the
Mars Orbiter Camera (MOC) has only two narrow-band s
sors, in red and blue wavelengths. To visualize images
quired with this camera, the green channel is synthesize
averaging the red and blue channels. In this case, the re
ered colors are used only for visualization purposes; the
not correspond to the ‘true’ colors that can be seen on M
not only because of the uncertainty introduced by synthe
ing the green channel, but also because the camera wa
calibrated for human observers. The issue of image re
duction4,5 introduced by the relationship between camera s
359
or
ent

ven
v-
ven
a-

an
nes
-

ed
he
sed

in
om
se
s-
el
nd

n-
e
in-

by
 the

n-
c-

 by
ov-
do
rs,
iz-
 not
ro-
n-

sor responses and visual perception (as partially determ
by the eye sensitivity curves) will not be addressed in t
paper.

In the general case, where statistics about the likeliho
of surfaces and illuminants is not known, synthesizing 
lost channel by simple averaging is the obvious choice. Ho
ever, if one takes into account a priori knowledge about the
scenes that are being taken with the camera, there are b
methods than simple averaging. Some of these methods, b
on knowledge about the statistics of ‘the world’ (defined 
the environment in which the camera is used) will be explo
in the following sections.

The uncertainty in the recovery of the lost channel is a
reduced due to the fact that the set of all possible cam
responses is limited. This happens because the RGB 
ues produced by the camera are correlated, due to over
ping and broadband sensors (as encountered in most C
cameras) and to the low dimensionality of the received co
signal.

The RGB camera responses are obtained by integra
the color signal with the camera sensor sensitivity functio

The color signal C is defined as the product between 
spectrum of the illumination I(λ) and the spectral reflectanc
S(λ):

C(λ) = I (λ)•S(λ) (1)

Previous studies have shown that common light sourc
such as daylights,6 and surface reflectances7 can be modeled
with three dimensional basis functions. Thus, RGB triple
like (255,0,0) are highly unlikely.

Recovery Methods

To simplify the presentation, the following methods will a
sume that the green channel is to be recovered, based o
remaining red and blue channels. In case of differences in
recovery method, based on which color channel is miss
all three recovery cases will be discussed.

Averaging
This method works in the absence of any knowledge ab

the world. If the green channel is lost, it is computed by av
aging the two remaining channels; if either the red or b
channels are to be recovered, they are linearly extrapol
from the other two, as shown in Figure 1.
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Figure 1. Color channel recovery by averaging

Linear Regression
This least-square regression maps the R and B color c

nels into G, such that it minimizes the residual squared e
for the calibration data. The goal is to find a transformat
matrix M, such that:

G R B M≅ ⋅[ ] (2)

where R, G and B are column vectors containing the cam
responses for the respective color channels. In this case
given by:

M = [R   B]* • G (3)

where the * operator denotes the pseudo-inverse. In fac
is a 2x1 matrix that assigns global weights to the R an
vectors. M is computed on a calibration data set and is 
tested on a different data set.

Polynomial Regression
This method adds polynomial terms to the calibrat

data. For the experiments shown in the next sections
transformation matrix M is computed as described abo
such that it minimizes the least-square error of the follo
ing equation:

G R G R G R G M≅ ⋅ ⋅[ ]2 2 (4)

A major disadvantage of this method is that, due to
non-linear form, it is sensitive to the magnitude of the p
brightness. In the case of linear regression, the lost col
computed as a weighted average between the remaining
colors. Thus the chromaticity of a recovered RGB pixel d
not depend on its brightness. Polynomial regression, on
other hand, introduces non-linear terms and thus make
recovery dependent on the absolute pixel brightness.

Neural Networks
The neural network method was implemented in or

to capture possible non-linear complex relationships betw
R, B and the lost G channel. The neural network  used in
experiments is a Perceptron8 with two hidden layers, as show
in Figure 2.
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Figure 2. Multi-layer Perceptron

The two inputs to the network correspond to the red a
blue channel and the output corresponds to the green ch
nel. The first hidden layer contains nine neurons and the s
ond one contains four. In a first phase, the neural network
trained by Backpropagation8 to estimate the green channe
from the red and blue inputs. The training set contains a la
set of RGB values corresponding to normal camera outpu
After training, the network is tested on a different data set
is presented with the R and B values and it produces an e
mate of G. For a particular RGB triplet, the estimation err
is defined as the absolute value of the difference between
network estimate and the correct answer. The average e
mation error on a given test set is taken as a measure o
neural network performance.

Experiments

Experimental Setup
The recovery methods described above were tested

synthesized data as well as on real images. Each experim
consists of a training (or calibration) phase, during which t
regression matrices and neural network parameters are c
puted, and a test phase, during which each method is te
on a different data set. All methods are compared against e
other and against a ‘do-nothing’ method. This is in fact
pseudo-method: it assumes that the estimate of the recov
channel is actually zero. Thus, the average error for t
method is equal to the average brightness of that particu
lost channel. This provides a comparison of the other me
ods with a worst case scenario, where nothing is done to 
prove the image quality.

All RGB values are scaled in the range of 0 to 1. Th
errors  computed in the RGB color space, are in the sa
range. To provide a correlation with the magnitude of erro
perceived by a human observer, the errors are also repo
in the perceptually uniform CIE Lab space. The conversi
from the RGB space to the Lab space is done in two ste
The first step is done within the sRGB framework:9 it is as-
sumed that all images are in sRGB format and that they 
displayed on a sRGB compliant monitor. sRGB values a
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converted into CIE XYZ coordinates. The second step invo
the transformation from the XYZ space to Lab.

Thus the errors in Lab space are relative to what a
man observer sees on a standard sRGB monitor. It mu
noticed that the algorithms were calibrated and thus optim
for the RGB color space and not for the Lab space. Be
the transformation from the RGB to the Lab color spac
non-linear, equal errors in the RGB space will yield er
with different magnitudes in the Lab space.

Experiments Done on Synthesized Data
Working with synthetic data has the advantage of a

fectly controlled environment. Moreover, an arbitrarily la
number of images can be generated, such that, when t
the algorithms, the results are stable.

This experimental setup illustrates the performanc
the recovery methods under ideal conditions.

For any RGB triplet, its values for the three color ch
nels are computed from a randomly selected surface r
tance Sj, the spectral distribution of an illuminant Ek and by
the spectral sensitivities of camera sensors for that color 
nel ρG, according to the following equation:

G E S
i

i
k

i
j

i
G= ⋅ ⋅∑ ρ  (5)

The index i is over the wavelength domain, in the ra
of 380nm to 780nm. Two identical experiments were 
formed with sensor sensitivities functions from two dig
cameras: SONY DXC-930 and Kodak DCS-460. For e
experiment, the data was generated from 34 illuminant p
spectra, 260 surface reflectances and a set of sensors.

The whole data set, composed of 8,840 RGB triplets
divided into two equal parts, one used for training and
for testing. The recovery methods were calibrated and t
for each set of sensors, for all of the R, G and B chan
The following two tables present the recovery errors obta
on the test sets, for both sets of sensors. The average e
the RGB and Lab space are µRGB and µLab.

The results, in RGB as well as in Lab space, are b
for the Kodak than for the SONY sensors. This is due t
fact that the Kodak sensors are broad and overlapping 
the SONY sensors are quite sharp. Because of this, the S
camera can produce a larger gamut of RGB values, wh
turn increases the uncertainty associated with the recov
a particular color channel.

Table 1. Recovery Errors for the Kodak DCS Sensors
Lost Channel:   R   G  B
Method   µRGB µLab µRGB µLab µRGB µLab

Do-nothing  0.359 50.83 0.334 128.3 0.269 70.0

Average    0.107 13.93 0.076 21.16 0.108 17.7

Linear    0.104 11.28 0.073 20.60 0.060 11.28
Regression

Polynomial  0.097 13.49 0.065 18.48 0.060 10.9
Regression

Neural    0.097 13.49 0.069 20.29 0.058 10.9
Network
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Table 2. Recovery Errors for the SONY DXC Sensors
Lost Channel:   R   G   B
Method    µRGB µLab µRGB µLab µRGB µLab

Do-nothing   0.241 76.74 0.184 104.4 0.241 76.74

Average     0.159 32.41 0.073 30.92 0.159 36.55

Linear     0.145 32.41 0.053 24.29 0.145 43.05
Regression

Polynomial   0.144 32.99 0.052 23.96 0.138 34.54
Regression

Neural     0.138 31.30 0.052 23.80 0.137 31.48
Network

Including implicit knowledge about possible RGB va
ues improved the recovery methods that were calibrated, 
tive to the simple averaging method. However, since all s
faces and illuminants were selected at random and thus
are equally probable, the improvement the other methods 
averaging was not large, with the notable exception of th
recovery for the Kodak sensors (see Table 1).

Experiments done on Real Images
Experimenting on real data has the disadvantages 

the number of images is not very large and that image 
facts, such as noise or flare, corrupt the sensor response
the other hand, working on real data permits the extractio
statistical information about the distribution of RGB triple
in the world.

In this experiment, the recovery methods were calibra
on RGBs taken from 46 images that were acquired wit
Kodak DCS-460 camera. The test was done on a differen
of RGBs taken from other 42 images, taken with the sa
camera. All images were linearized, to compensate for
built-in gamma correction of the camera and were resamp
to reduce the noise.

A total of 118,223 RGBs were used for calibration a
96,688 RGBs were used for testing. The recovery meth
were also compared against the neural network trained
synthetic data, generated with the Kodak sensors. The re
are presented in Table 3.

Table 3. Recovery Errors for Real Data

Lost Channel:   R          G          B
Method    µRGB µLab µRGB µLab µRGB µLab

Do-nothing   0.212 28.73 0.209 68.04 0.205 54.58

Average        0.082 9.54 0.042 9.91 0.074 12.72

Linear            0.071 8.81 0.042 9.72 0.057 10.05
Regression

Polynomial    0.069 8.37 0.042 9.95 0.055 9.71
Regression

Synthetic       0.084 10.54 0.055 12.52 0.069 12.32
Network

Real               0.073 8.76 0.051 11.53 0.056 9.86
Network
1
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All errors are smaller than the ones reported for tests d
on synthetic data. One reason for this is that image reco
is more accurate on desaturated RGBs and, statistically,
type of RGB triplets is more frequent than saturated RGB
real images. Figure 4 shows the relationship between  re
ery error and pixel saturation. The average recovery erro
plotted against the pixel saturation, defined as the dista
from white in the rg-chromaticity space. The rg-chromatic
space is a normalized RGB space, in which the coordin
are: r=R/(R+G+B) and g=G/(R+G+B).

Figure 3. Recovery error as a function of saturation

Moreover, the recovery methods that take into acco
the statistics of the world perform better than the simple 
eraging method. The neural network that was trained on s
thetic data performed worse than the other recovery meth
because it was trained on a different, equally probable di
bution of RGB triplets.

Experiments of Color Recovery of Face Images
As noted before, desaturated colors (such as skin, for

ample) are recovered with more accuracy than saturated o
Based on this observation, a separate test was done on
ages containing only human faces. Eight images, taken 
a DCS camera under different illuminants, were tested us
the methods calibrated for the previous test (i.e. on real d
Table 4 shows the results of the recovery.

Table 4. Recovery Errors for Human Faces

Lost Channel: R G B
Method         µRGB       µLab      µRGB      µLab     µRGB     µLab

Do-nothing    0.751      51.53      0.559      92.67      0.505   75

Linear            0.154        8.16      0.05        6.14     0.053     4
Regression
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Implications for Image Compression
As shown in the previous experiment, the appearanc

human faces and skin color in particular is faithfully reco
ered. This aspect could have implications for the transm
sion of still or video images (such as video-conferencing
which the fidelity of the color tone of human faces is cons
ered to be more important than the rest of the image, an
which spatial resolution is also important. Temporary ba
width limitations can be partially compensated by transm
ting dichromatic images instead of trichromatic ones.

The following chart shows relative file sizes obtained 
JPG compression of images with all three RGB chann
present and images where one of the color channels (G in
experiment) was set to zero:

Ratio
Size of dichromatic image

Size of original image
= (6)

The compression ratios are expressed as a functio
the quality factor. A quality factor of 100 corresponds to lo
less compression.

Figure 4. Compression Ratios

Conclusion

This paper explored the possibility of recovering a lost co
channel from an RGB image, based on the information pre
in the remaining two color channels, as well as on a priori
knowledge about the statistics of sensor responses in a g
environment.

A camera’s sensors determine the size of the RGB ga
that can be obtained using that camera. Using this infor
tion, as well as samples of possible illuminants and sur
reflection functions improves the simple averaging appro
to color channel recovery.

Using statistics about the environment and calibrat
the recovery methods relative to camera responses in a g
viewing context further improves the recovery of the miss
color channel. From the experiments that were performe
seems that a neural network approach does not improve m
the accuracy of recovery over a less complex method, suc
linear regression.
2
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Desaturated colors are recovered more faithfully th
saturated ones. This has implications in the tone fidelity
faces–and skin in general–and can lead to additional im
compression.

Remote guided vehicles as well as remote sensing ap
cations can benefit from the redundancy introduced by t
visualization technique.
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